5 Star
Former SAS soldier and TV survivalist Bear Grylls champions the joy of outdoor living   Bear Grylls looks like a man who has everything: fame, fortune, a wife he loves and three young boys. But the world’s best-loved adventurer...


Ethics statement

All animal experiments were performed according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and were approved by the Institutional Animal Care and Use Committee at the University of Texas Medical Branch, Galveston (protocol number: 805029).


The Latest: Dixon earns first IndyCar win of season



equine news, research, and information


Fill in your details below or click an icon to log in:



  1. 1. World Health Organization (2014) Chagas Disease (American Trypanosomiasis). Geneva, Switzerland: UNDP/World Bank, http://www.who.int/mediacentre/factsheets/fs340/en/index.html.
  2. 2. Bern C, Montgomery SP (2009) An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49: e52–54. pmid:19640226
  3. 3. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ (2013) Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 13: 342–348. pmid:23395248
  4. 4. Pinazo MJ, Guerrero L, Posada E, Rodriguez E, Soy D, et al. (2013) Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob Agents Chemother 57: 390–395. pmid:23114763
  5. 5. Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, et al. (2012) Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Seminars in Immunopathology 34: 753–770. pmid:23076807
  6. 6. Tanowitz HB, Wen JJ, Machado FS, Desruisseaux MS, Robello C, et al. (2016) Trypanosoma cruzi and Chagas disease: innate immunity, ROS, and cardiovascular system. Chapter 14 in: Vascular Responses to Pathogens; Stokes K. and Gavins F. eds; Academic Press / Elsevier Inc. Waltham, MA.
  7. 7. Wen J-J, Garg NJ (2010) Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice. Antioxid Redox Signal 12: 27–37. pmid:19624257
  8. 8. Wen JJ, Garg NJ (2008) Mitochondrial generation of reactive oxygen species is enhanced at the Q(o) site of the complex III in the myocardium of Trypanosoma cruzi-infected mice: beneficial effects of an antioxidant. J Bioenerg Biomembr 40: 587–598. pmid:19009337
  9. 9. Wen JJ, Dhiman M, Whorton EB, Garg NJ (2008) Tissue-specific oxidative imbalance and mitochondrial dysfunction during Trypanosoma cruzi infection in mice. Microbes Infect 10: 1201–1209. pmid:18675934
  10. 10. Wan X-X, Gupta S, Zago MP, Davidson MM, Dousset P, et al. (2012) Defects of mtDNA replication impaired the mitochondrial biogenesis during Trypanosoma cruzi infection in human cardiomyocytes and chagasic patients: The role of Nrf1/2 and antioxidant response. J Am Heart Assoc 1: e003855 pmid:23316324
  11. 11. Dhiman M, Estrada-Franco JG, Pando J, Ramirez-Aguilar F, Spratt H, et al. (2009) Increased myeloperoxidase activity and protein nitration are indicators of inflammation in chagasic patients. Clinical and Vaccine Immunology 16: 660–666. pmid:19297613
  12. 12. Wen J-J, Yachelini PC, Sembaj A, Manzur RE, Garg NJ (2006) Increased oxidative stress is correlated with mitochondrial dysfunction in chagasic patients. Free Rad Biol Med 41: 270–276. pmid:16814107
  13. 13. Wen JJ, Porter C, Garg NJ (2017) Inhibition of NFE2L2-ARE pathway by mitochondrial ROS contributes to development of cardiomyopathy and left ventricular dysfunction in Chagas disease. Antioxid Redox Signal Jan 28. pmid:28132522
  14. 14. Orsucci D, Caldarazzo Ienco E, Mancuso M, Siciliano G (2011) POLG1-related and other "mitochondrial Parkinsonisms": an overview. J Mol Neurosci 44: 17–24. pmid:21221844
  15. 15. Bailey LJ, Doherty AJ (2017) Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 45: 513–529. pmid:28408491
  16. 16. Ba X, Garg NJ (2010) Signaling Mechanism of PARP1 in Inflammatory Diseases. Am J Pathol 178: 946–955.
  17. 17. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329: 18–25. pmid:25017100
  18. 18. Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113: 677–683. pmid:12809599
  19. 19. Ba X, Gupta S, Davidson M, Garg NJ (2010) Trypanosoma cruzi induces ROS-PARP1-RelA pathway for up regulation of cytokine expression in cardiomyocytes. J Biol Chem 285: 11596–11606. pmid:20145242
  20. 20. Scott GS, Kean RB, Mikheeva T, Fabis MJ, Mabley JG, et al. (2004) The therapeutic effects of PJ34, a selective inhibitor of poly(ADP-ribose) polymerase, in experimental allergic encephalomyelitis are associated with immunomodulation. J Pharmacol Exp Ther 310: 1053–1061. pmid:15159442
  21. 21. Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, et al. (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med 7: 255–260. pmid:11179503
  22. 22. Wen JJ, Wan X, Thacker J, Garg NJ (2016) Chemotherapeutic efficacy of phosphodiesterase inhibitors in chagasic cardiomyopathy. JACC Basic Transl Sci 1: 235–250. pmid:27747306
  23. 23. Cox B, Emili A (2006) Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protoc 1: 1872–1878. pmid:17487171
  24. 24. Dhiman M, Garg NJ (2011) NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 225: 583–596. pmid:21952987
  25. 25. Motta C, D'Angeli F, Scalia M, Satriano C, Barbagallo D, et al. (2015) PJ34 inhibits PARP1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells. Eur J Pharmacol 761: 55–64. pmid:25934569
  26. 26. Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11: 39–43. pmid:14019961
  27. 27. Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, et al. (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol Biosyst 7: 1523–1536. pmid:21359316
  28. 28. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, et al. (2003) Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 278: 18426–18433. pmid:12626504
  29. 29. Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE, et al. (2012) Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 14: 634–643. pmid:22309180
  30. 30. Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, et al. (2012) Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 4: 1743–1758.
  31. 31. Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F, et al. (2008) Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 104: 1700–1711. pmid:17996029
  32. 32. Modis K, Gero D, Erdelyi K, Szoleczky P, DeWitt D, et al. (2012) Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress. Biochem Pharmacol 83: 633–643. pmid:22198485
  33. 33. Kelly G (2010) A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev 15: 245–263. pmid:21155626
  34. 34. Bai P, Canto C, Brunyanszki A, Huber A, Szanto M, et al. (2011) PARP2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 13: 450–460. pmid:21459329
  35. 35. Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, et al. (2011) PARP1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13: 461–468. pmid:21459330
  36. 36. Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ (2016) SIRT1-PGC1?-NF?B pathway of oxidative and inflammatory stress during Trypanosoma cruzi infection: Benefits of SIRT1-targeted therapy in improving heart function in Chagas disease. PLoS Pathog 12: e1005954. pmid:27764247
  37. 37. Gagne JP, Ethier C, Gagne P, Mercier G, Bonicalzi ME, et al. (2007) Comparative proteome analysis of human epithelial ovarian cancer. Proteome Sci 5: 16. pmid:17892554
  38. 38. Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 106: 383–405. pmid:16464011
  39. 39. Druzhyna N, Smulson ME, LeDoux SP, Wilson GL (2000) Poly(ADP-ribose) polymerase facilitates the repair of N-methylpurines in mitochondrial DNA. Diabetes 49: 1849–1855. pmid:11078451
  40. 40. Szczesny B, Brunyanszki A, Olah G, Mitra S, Szabo C (2014) Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res 42: 13161–13173. pmid:25378300
  41. 41. Marcon GE, de Albuquerque DM, Batista AM, Andrade PD, Almeida EA, et al. (2011) Trypanosoma cruzi: parasite persistence in tissues in chronic chagasic Brazilian patients. Mem Inst Oswaldo Cruz 106: 85–91.
  42. 42. Singhirunnusorn P, Moolmuang B, Lirdprapamongkol K, Ruchirawat M (2018) Arsenite exposure potentiates apoptosis-inducing effects of TNF-? through reactive oxygen species. J Toxicol Sci 43: 159–169. pmid:29479036
  43. 43. Wang G, Huang X, Li Y, Guo K, Ning P, et al. (2013) PARP1 inhibitor, DPQ, attenuates LPS-induced acute lung injury through inhibiting NF?B-mediated inflammatory response. PLoS One 8: e79757. pmid:24278171
  44. 44. Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, et al. (2017) NAD metabolism fuels human and mouse intestinal inflammation. Gut.
  45. 45. Faraone-Mennella MR (2015) A new facewt of ADP-ribosylation reactions: SIRTs and PARPs interplay. Front Biosci (Landmark Ed) 20: 458–473.
  46. 46. Canto C and Auwerx J (2011) Interference between PARPs and SIRT1: a novel approach to healthy ageing? Aging (Albany NY) 3: 543–547.
  47. 47. Canto C, Sauve AA, Bai P (2013) Cross-talk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 34: 1168–1201. pmid:23357756